Source code for optimagic.optimization.optimize_result

import warnings
from dataclasses import dataclass
from typing import Any, Dict, Optional

import numpy as np
import pandas as pd

from optimagic import deprecations
from optimagic.logging.logger import LogReader
from optimagic.optimization.history import History
from optimagic.shared.compat import pd_df_map
from optimagic.typing import PyTree
from optimagic.utilities import to_pickle


[docs]@dataclass class OptimizeResult: """Optimization result object. **Attributes** Attributes: params: The optimal parameters. fun: The optimal criterion value. start_fun: The criterion value at the start parameters. start_params: The start parameters. algorithm: The algorithm used for the optimization. direction: Maximize or minimize. n_free: Number of free parameters. message: Message returned by the underlying algorithm. success: Whether the optimization was successful. n_fun_evals: Number of criterion evaluations. n_jac_evals: Number of derivative evaluations. n_iterations: Number of iterations until termination. history: Optimization history. convergence_report: The convergence report. multistart_info: Multistart information. algorithm_output: Additional algorithm specific information. """ params: Any fun: float start_fun: float start_params: Any algorithm: str direction: str n_free: int message: str | None = None success: bool | None = None n_fun_evals: int | None = None n_jac_evals: int | None = None n_hess_evals: int | None = None n_iterations: int | None = None status: int | None = None jac: PyTree | None = None hess: PyTree | None = None hess_inv: PyTree | None = None max_constraint_violation: float | None = None history: History | None = None convergence_report: Dict | None = None multistart_info: Optional["MultistartInfo"] = None algorithm_output: Dict[str, Any] | None = None logger: LogReader | None = None # ================================================================================== # Deprecations # ================================================================================== @property def criterion(self) -> float: msg = "The criterion attribute is deprecated. Use the fun attribute instead." warnings.warn(msg, FutureWarning) return self.fun @property def start_criterion(self) -> float: msg = ( "The start_criterion attribute is deprecated. Use the start_fun attribute " "instead." ) warnings.warn(msg, FutureWarning) return self.start_fun @property def n_criterion_evaluations(self) -> int | None: msg = ( "The n_criterion_evaluations attribute is deprecated. Use the n_fun_evals " "attribute instead." ) warnings.warn(msg, FutureWarning) return self.n_fun_evals @property def n_derivative_evaluations(self) -> int | None: msg = ( "The n_derivative_evaluations attribute is deprecated. Use the n_jac_evals " "attribute instead." ) warnings.warn(msg, FutureWarning) return self.n_jac_evals # ================================================================================== # Scipy aliases # ================================================================================== @property def x(self) -> PyTree: return self.params @property def x0(self) -> PyTree: return self.start_params @property def nfev(self) -> int | None: return self.n_fun_evals @property def nit(self) -> int | None: return self.n_iterations @property def njev(self) -> int | None: return self.n_jac_evals @property def nhev(self) -> int | None: return self.n_hess_evals # Enable attribute access using dictionary-style notation for scipy compatibility def __getitem__(self, key): return getattr(self, key) def __repr__(self) -> str: first_line = ( f"{self.direction.title()} with {self.n_free} free parameters terminated" ) if self.success is not None: snippet = "successfully" if self.success else "unsuccessfully" first_line += f" {snippet}" counters = [ ("criterion evaluations", self.n_fun_evals), ("derivative evaluations", self.n_jac_evals), ("iterations", self.n_iterations), ] counters = [(n, v) for n, v in counters if v is not None] if counters: name, val = counters[0] counter_msg = f"after {val} {name}" if len(counters) >= 2: for name, val in counters[1:-1]: counter_msg += f", {val} {name}" name, val = counters[-1] counter_msg += f" and {val} {name}" first_line += f" {counter_msg}" first_line += "." if self.message: message = f"The {self.algorithm} algorithm reported: {self.message}" else: message = None if self.start_fun is not None and self.fun is not None: improvement = ( f"The value of criterion improved from {self.start_fun} to " f"{self.fun}." ) else: improvement = None if self.convergence_report is not None: convergence = _format_convergence_report( self.convergence_report, self.algorithm ) else: convergence = None sections = [first_line, improvement, message, convergence] sections = [sec for sec in sections if sec is not None] msg = "\n\n".join(sections) return msg
[docs] def to_pickle(self, path): """Save the OptimizeResult object to pickle. Args: path (str, pathlib.Path): A str or pathlib.path ending in .pkl or .pickle. """ to_pickle(self, path=path)
@dataclass(frozen=True) class MultistartInfo: """Information about the multistart optimization. Attributes: start_parameters: List of start parameters for each optimization. local_optima: List of optimization results. exploration_sample: List of parameters used for exploration. exploration_results: List of function values corresponding to exploration. n_optimizations: Number of local optimizations that were run. """ start_parameters: list[PyTree] local_optima: list[OptimizeResult] exploration_sample: list[PyTree] exploration_results: list[float] def __getitem__(self, key): deprecations.throw_dict_access_future_warning(key, obj_name=type(self).__name__) return getattr(self, key) @property def n_optimizations(self) -> int: return len(self.local_optima) def _format_convergence_report(report, algorithm): report = pd.DataFrame.from_dict(report) columns = ["one_step", "five_steps"] table = pd_df_map(report[columns], _format_float).astype(str) for col in "one_step", "five_steps": table[col] = table[col] + _create_stars(report[col]) table = table.to_string(justify="center") introduction = ( f"Independent of the convergence criteria used by {algorithm}, " "the strength of convergence can be assessed by the following criteria:" ) explanation = ( "(***: change <= 1e-10, **: change <= 1e-8, *: change <= 1e-5. " "Change refers to a change between accepted steps. The first column only " "considers the last step. The second column considers the last five steps.)" ) out = "\n\n".join([introduction, table, explanation]) return out def _create_stars(sr): stars = pd.cut( sr, bins=[-np.inf, 1e-10, 1e-8, 1e-5, np.inf], labels=["***", "** ", "* ", " "], ).astype("str") return stars def _format_float(number): """Round to four significant digits.""" return f"{number:.4g}"